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I. INTRODUCTION

The widespread concern over mass data collection by social networks, corporations, and data brokers has prompted gov-
ernments and jurisdictions to establish regulatory frameworks aimed at safeguarding personal data and enhancing privacy
protections. Early frameworks like the Health Insurance Portability and Accountability Act (HIPAA) of 1996 introduced privacy
and security standards for sensitive health information, including restrictions on unauthorized access to medical records and
data confidentiality mandates. More recently, the European Union’s General Data Protection Regulation (GDPR) introduced
robust privacy rights such as data access, rectification, erasure, and portability, inspiring similar laws worldwide, including the
California Consumer Privacy Act (CCPA).

However, adhering to these frameworks is challenging due to their complexity, jurisdictional variations, frequent updates,
and the continuous need for audits and training. For individuals, understanding their rights under these intricate regulations
can be equally overwhelming.

Large Language Models (LLMs) offer potential solutions by helping interpret and navigate complex legal texts, but they have
significant limitations. LLMs are prone to inaccuracies and “hallucinations,” producing unreliable or misleading responses that
risk non-compliance. They also lack essential capabilities such as traceability, explainability, and the production of verifiable
outputs, which are crucial in regulatory contexts. Even with fine-tuning, LLMs struggle with evolving regulations and the
complex symbolic reasoning needed for compliance checking.

In contrast, formal verification approaches can effectively assess compliance by translating regulations into logical formulas
using fragments of First-Order Logic (FOL) or First-Order Temporal Logic (FOTL). These methods evaluate whether disclosure
events meet regulatory requirements by checking logical formulas against event logs. However, their main limitation is
accessibility; they are not user-friendly for general audiences who must engage with formal logic languages to interact with
these systems.

II. COMPLIANCEGPT: A HYBRID APPROACH

To bridge this gap, we introduce ComplianceGPT, a hybrid system that combines specialized LLMs with a dedicated logic-
based compliance checker, called précis. ComplianceGPT aims to provide an intuitive, user-friendly interface for navigating
regulatory compliance while leveraging the rigor and reliability of formal verification. The system will process natural language
queries (e.g., “Can a doctor send my medical record to a third party under HIPAA?”) and translate them into FOL formulas (e.g.,
disclose(p1, p2, ¢, medical_records) A inrole(p1, doctor) A inrole(ps, patient) A p; = ¢, in which p; denotes the information
sender, p, denotes the information receiver, and ¢ denotes the subject whose PII is being released by p; to p2) using a
specialized vocabulary derived from the regulation’s representation.

Realizing ComplianceGPT will involve addressing several technical challenges in both natural language processing (NLP) and
formal verification fields. In NLP, we need to develop robust methods for translating natural language questions into precise
logical representations compatible with formal compliance checkers. In formal verification, we must enhance compliance-
checking algorithms to produce traceable and explainable outputs, such as compliance proof-trees that justify why a particular
data disclosure is permissible under the applicable regulation.

A. ComplianceGPT Architecture

ComplianceGPT exposes a natural language input and output interface. The user’s natural language query is processed by
LLMI1, which translates the query into a FOL representation understood by précis. Précis then evaluates this query against
the relevant regulation, producing a compliance decision along with traceability information. This traceability information is
subsequently processed by LLM?2, which translates the results back into a user-friendly natural language response. Although
the system appears to be a straightforward pipeline, its realization involves overcoming significant challenges:

o Instantiating LLM1: How do we develop or adapt an LLM that accurately translates user queries into the FOL
representation required by précis?

o Enhancing précis with Traceability: How do we modify précis to generate detailed traceability information that explains
its decisions?

« Instantiating LLM2: How do we ensure LLM2 effectively translates the traceability outputs from précis into concise,
understandable natural language?
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1) Instantiating LLM1: The most direct approach to instantiate LLM1 is to utilize a generic LLM (LLMG) capable of
translating natural language into FOL. However, LLMG might produce formulas containing predicates outside the target
regulation’s vocabulary. To address this, LLMG can be fine-tuned or employed in an in-context learning configuration that
restricts its output to the relevant predicates.

Training Data Generation: A critical step involves generating appropriate training data for LLM1. By leveraging the FOL
representation of the regulation, we can systematically walk through the abstract syntax tree (AST) of the logic-based policy
to create natural language training examples corresponding to each logical expression. For instance, given the FOL expression
disclose(p1, p2, q, medical_records) A inrole(py, doctor) A inrole(ps, patient), we can create a variety of natural language
queries such as “Can a doctor disclose a patient’s medical records?” To diversify the training dataset, LLMG can be used to
paraphrase these queries, generating multiple variations that improve the robustness of the fine-tuned model.

2) Enhancing Précis with Traceability Information: Extending précis involves augmenting its algorithms to provide detailed
traceability and provenance information. This includes linking compliance decisions to specific sections of the regulation and
generating execution trees that explain which rules were applied and why certain conditions were met or violated. Additionally,
by incorporating symbolic execution techniques, précis can handle planning queries, such as determining conditions under which
a doctor can share patient information under HIPAA.

3) Instantiating LLM?2: Similar to LLM1, LLM?2 translates the FOL-based outputs from précis into natural language.
Initially, a deterministic translator can be used to generate rudimentary natural language explanations from the AST of the FOL
representation. To refine these outputs, we can use LLMG with prompts designed to summarize and enhance the readability of
the deterministic translations. Again, the paraphrasing trick can be employed to diversify and expand the training data, enabling
either fine-tuning of LLMG or effective in-context learning for LLM2.

III. EVALUATION PLAN

1) Baseline Comparison: Our primary baseline involves a fine-tuned version of LLMG trained on the synthetic data
generated using the techniques described above. We will compare ComplianceGPT’s performance against this baseline
across various evaluation metrics, including accuracy, completeness, and traceability of responses.

2) Use of HIPAA Training Materials: By comparing ComplianceGPT’s responses to these standard training materials, we
will identify any mismatches or discrepancies, which will help pinpoint weaknesses in our approach or highlight areas
where ComplianceGPT can be further improved.

3) Systematic Query Testing: To further evaluate LLM1 and LLM2, we will generate random permutations of FOL queries
using précis and test these in collaboration with the respective LLMs. For instance, outputs generated by précis can be
translated back into natural language by LLM?2 and fed into LLM1 to test whether it accurately reconstructs the original
FOL query, and vice versa. This round-trip testing will help us evaluate the internal consistency of ComplianceGPT.

4) Human-Subject Study: In this study, fellow graduate students in the lab whose research focuses are computer security
and/or AI/ML research will interact with both ComplianceGPT and the baseline system in a semi-adversarial setting,
where their goal will be to elicit undesired or erroneous behaviors from the systems. This setting will help us assess
the robustness of ComplianceGPT and gather qualitative feedback on user experience, system accuracy, and perceived
trustworthiness.

IV. ONGOING PRELIMINARY WORK

To build a robust foundation for ComplianceGPT, we are currently engaged in research that explores the capabilities and
limitations of LLMs in translating natural language (NL) into Propositional Linear Temporal Logic (LTL) formulas. This work
is a critical step in understanding the effectiveness of LLMs in handling logical translations, a key component for the success
of ComplianceGPT. Our investigations reveal that while LLMs are adept at generating basic logical formulas, they often falter
when tasked with more complex translations that require deep contextual understanding and symbolic reasoning—limitations
that directly inform the design of ComplianceGPT.

By thoroughly evaluating LLM performance on NL to LTL tasks, we gain insights into their shortcomings, such as
inconsistency in logical accuracy and difficulty in adapting to new or evolving regulations. This foundational research informs
the integration strategy for ComplianceGPT, ensuring that the LLM components are appropriately augmented with logic-
based systems like précis to mitigate these shortcomings. Ultimately, the goal of ComplianceGPT is to provide an accurate,
explainable, and adaptable tool for navigating regulatory compliance, leveraging the strengths of both Al-driven and formal
verification methodologies.

V. CONCLUSION

ComplianceGPT aims to revolutionize the way organizations and individuals interact with regulatory frameworks by providing
a reliable, traceable, and intuitive Al assistant. Our approach combines the strengths of LLMs in handling natural language
with the rigor of formal methods, paving the way for more accessible and verifiable compliance solutions. While our current
focus is on HIPAA, ComplianceGPT’s modular design allows for easy adaptation to other regulations, offering a versatile tool
for navigating the complex and evolving landscape of data privacy laws.



